
AD-AIEI 146 NLLETRAE T.CUILNOSUIATUAN

7 *DR161409 INVESTIOT16N OF PLNR UYEGUIDES ND COMPONENTS FOR v

NCL SIIEDCOORDINATED SCIENCE LRB K J WEBB ET AL. NAN 85 R-1634
UNCLSSIFIE OOS14-84-C-1149F/0 9/ NL

EIhh~hhh



IlaoI

1.1.8
11111.25 .4 6

ml C .OCOPY RESOLUTION TEST CHART

NATIONAL. BUREAU OF STANDARDS -o963-A

%1



REPORT R-1034 MARCH 1985 U ILU-ENG 8 22O9

riwCO CORINA TED SCIENCE LABORATORY

CLD

INETGAINOFPAA

FOIVRST MILLIETER-WAVEILIOI



REPORT DOCUMENTATION PAGE
a& REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified None
2& SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILASILITY OF REPORT

N/A Approved for public release, distribution
2b. OECLASSIFICATION/OWNGRAOING SCHEOULE unlimited.

N/A
A. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

R-report #1034 N/A

G&. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab. (fapialt
Univ. of Illinois N/A Office of Naval Research

6c. ACORESS (City, State and ZIP Code)I 7b. ACORESS (City. Stow. and ZIP Code)

1101 W. Springfield Avenue 800 N. Quincy Street
Urbana, Illinois 61801 Arlington, VA 22217

Be. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER

1 N/A Contract #N00014-84-C-0149
Sc. AORESS (City. State and ZIP Code) 10. SOURCE OF FUNOING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11 TITLE 1111"d. SecunitY CIGNuaIat9aJOR
Investifation of Planar Wave i qs & Compone ts

12. PERSONAL AUTHOR(S)
K. J. Webb and R. Mittra

13a. TYPE OF REPORT 13b. Time COVEREO 14. OATS OF REPORT (Yr...Mo.. Day) 15. PAGE COUNT

Technical FROM ___ TO ___ March 1985 '

17. ABSTRAC 'Coninu on Severse TERM nContinue ond ndmnttt by btocke# annieniy y lokrs

Several important elements in millimeter-wave integrated circuit systems are studied.
Filter-type structures which are composed of a series of discontinuities are employed
frequently in such systems. The study of the general discontinuity problem is thus very
important.

20. OISTRI1BUTIONIAVAILABIO-ITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLAS31FIED/UNLIMITEOg SAME AS RPT. C OTIC USERS Unclassified

22a. 14AME OF RESPONSIBLE INOIVIOUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
fInCtude Area Code) None



INVESTIGATION OF PLANAR WAVEGUIDES
AND COMPONENTS FOR MILLIMETER-WAVE .. ~

INTEGRATED CIRCUITS

K. J. Webb and R. Mittra

Department of Electrical &Computer Engineering
University of Illinois

Urbana, Illinois

Accesio.' For

\T~2CRAWI
o~zed El

--------------- -

,j'~ity Codes

(3

The work reported in this paper was supported in part by the Joint Services
Electronics Program, N00014-84-C-0149.



iv

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

2. UNIFORM FIN-LINE ANALYSIS 2
2.1 Introduction 2
2.2 Spectral Domain Formulation for Fin-Line 2
2.3 Results and Discussion 12

3. MOMENT METHOD ANALYSIS OF FIN-LINE DSCONTINU1TE. . 26
3.1 The Fin-Line Discontinuity Problem .6
3.2 Theoretical Analysis for the Single Discontinuity 26-
3.3 Numerical Results for the Single Discontinuity .3
3.4 Theoretical Analysis for an Infinite Periodic

Array of Discontinuities .34
3.5 Numerical Results for an Infinite Periodic

Array of Discontinuities 37
3.6 C oncluding R e a ks . . . ..... '

4. ITERATIVE AND VARIATIONAL SOLUTIONS FOR FIN-LINE DISCONTINUTIES . . 41~4.1 Introduction . . ..... 41 "'

4.2 Formulation Using Unknowns in the Junction Plane - 41
4.3 Conjugate Gradient Solution for Unknowns in the

Junction Plane A8
4.4 Numerical Results for the Conjugate Gradient

* Solution in the Junction Plane AG

4.5 Solution in the Junction Plane Using the Generalized
* Variational Technique

4.6 Numerical Results for the Generalized Variational Solution
of the Fin-Line DiscontinuityProblem -- ..... 54 ,

4.7 Concluding Remarks 55

5. DIELECTRIC WAVEGUIDE FILTERS 69
5.1 Introduction -69
5.2 Analysis of Dielectric Waveguide GratingStructure 69
5.3 Results and Discussion 76

6. CONCLUSION .. 80

REFERENCES 81

VIT vrx- 84



Chapter 1: INTRODUCTION

Millimeter-wave systems have received increased interest in recent years, and serve a broad spec-

trum of applications. Many of these systems employ receiver and transmitter sub-systems. The use of

integrated circuits at millimeter-wave frequencies is essential to meet performance, cost, size, and other

constraints. The integration of millimeter-wave transmitters and receivers is of primary importance.

It is desirable to place as many components as possible; for example, amplifiers, filters, switches, anten-

nas; on one substrate or waveguide medium. Millimeter-wave integrated circuits are receiving consid-

erable exposure (1]. [2].

This thesis considers several important elements for use in millimeter-wave integrated circuits.

Two different wave-guiding media are considered: fin-line, which is a member of the metallized sub- .--

strate family, and image guide, which is a member of the rectangular dielectric waveguide family.

Filter-type structures, which consist of a series of discontinuities, are studied. These structures

are used in matching elements for active devices and antennas, radiating elements, and as filters. Some

of these components have been studied [3]47].

The solution of the discontinuity problem is therefore of particular importance. A suitable char-

acterization for a single discontinuity permits the analysis of some series of discontinuities via general-

ized scattering and transmission matrices.

The uniform fin-line structure is analyzed in Chapter 2. This analysis gives propagation con-

stants, characteristic impedances and mode functions.

Chapters 3 and 4 deal with two different approaches for solving the fin-line discontinuity prob-

lem. A moment method is used to study a single and an infinite periodic array of discontinuities in

Chapter 3. An iterative method and a variational approach are used to solve the single fin-line discon-

tinuity problem in Chapter 4.

An image guide grating filter is studied in Chapter 5. Theoretical and experimental curves for the

insertion low charac zeristic are given.
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CHAPTER 2: UNIFORM FIN-LINE ANALYSIS _

2.1. Introduction

The unilateral fin-line structure shown in Fig. 2.1. is studied in this thesis. It consists of a metal

cladding on one side of a dielectric substrate, which is mounted in a shielded enclosure. The metalli-

zation will be assumed infinitesimally thin. A generalized guide may consist of some combination of

dielectrics and metallized surfaces.

A number of recent papers have used the spectral domain formulation, in conjunction with a

moment method, to analyze the fin-line (8]-(121 In particular, Galerkin's method has been shown t

be satisfactory.

Several of these authors have analyzed the fin-line structure by expressing the fields in terms of

scalar potential functions in each transverse region, and then applying the appropriate boundary con-

ditions to obtain the required coupled equations [81, [9] [11]. This approach is satisfactory when the

structure can be analyzed as a two-region problem, for example, symmetric bilateral fin-line. How-

ever, the unilateral fin-line is a three-region problem, which results in prohibitive algebra. For a

larger number of regions the problem is compounded.

An alternative approach is to use the transverse resonance technique in the spectral domain [10]

[12]. This method greatly simplifies the formulation, and will be utilized in the work presented here.

The uniform fin-line problem is formulated in Section 2.2. Details of the formulation procedure

and the numerical methods used in the solution, namely, the moment method, are given. It is neces-

sary to obtain data for the propagation constants, characteristic impedances and the mode functions.

Theoretical and experimental results are given in Section 2.3.
4.-

22. Spectral Domain Formulation for Fin-LAne

Waveguides such as fin-line and microstrip are most simply formulated in the spectral domain.

This involves using the Fourier series representation of all field quantities in the transverse direction,

.......... *..*. .**~ -... - - .

*.....
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Figure 2.1. Unilateral fin-line structure.
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parallel to the metallization. This is the x-direction for the geometry of Fig. 2.1. The transform pair

for quantity A is defined as

2b

A (k ,y)=--. f A (x,y) e dx (2.1a)
0

A (x,y) -A: = A(kz,y)e jkxz +k~z) (2.1b) P
,, =--CcC

where k.- 2n = ,± ,±2,
2b

The continuous Fourier Transform may be used to find these quantities at the discrete k. values.

Without the metallization on the dielectric surface, TE-to-y and TM-to-y modes propagate. The

fin-line modes can be considered as superpositions of these modes. I"

An analogy is now drawn with a plane wave incident on a dielectric boundary at some angle.

If the fields are decomposed into components parallel and perpendicular to the propagation direction.

no coupling between these components will occur at the interface. The resulting equations have been

decoupled.

A similar concept may be employed in the fin-line case. Equation (2.1b) represents a superposi-

tion of plane waves propagating in the (k, x + k z ) direction, which will be called the u-direction.

Consider the orthogonal (uv) coordinate system in the (xz) plane, as shown in Fig. 2.2(a). The fol-

lowing coordinate transformation relationships hold for quantity a

a, = a. N. + a, N, (2.2a)

a, = --az Nx + a. N,

a, = a. N. + a, N, (2.2b)

a.

o..

,. - -... . . .

. U-



(a)

Z

2d

Er 2b

(b)

fu+ d)
Znas ZT?2 ZIMe

ZTv Z"u ZTEI

Figure 2.2. (a) (xz) and (i.uv) coordinate system, (b) Equivalent transverse resonance circuits for
analyzing the fin-line structure.
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k,

-,r,.2 + k,2

(2.3)

N. -,rk2 + k2::.

The field quantities expressed in the (uv) coordinate system allow a decoupled transverse reso-

nance analysis. The two equivalent transmission lines for TM to y and u (E ,E H) and TE to y

and u (H, ,Ev ,H/) are shown in Fig. 2.2(b). The wave impedances in the y-direction are

Z = -,aE 0=

4W t o ;, .

ZTEf = (2.4)

where y = k 2+ k Eo e,. k.

Spectral domain relationships between the fin current densities and the slot fields may be

formed simply from the transmission line equivalent circuits. The relationships are

k (k.1. + 2d) = Y. i. (k.J, + 2d) (2-5a)

~(k,, + 2d)=Y. IF, (k. L+ 2d) (2.5b)

where 1 + ZTM I + ZTM2 tah(-y21l)tanh(2 yld )

Z' M2 tanh(Y21 2) ZTM1I (ZTM2 tanh(y 21 ) + ZTMI tanh(2 I))d
1 I ZE+ ZTE 2 tanh(,y21 )tanh(2 y d)

Z TM2 tanh(Y21 2) ZTE I (ZTE 2 tanh(vi 1) + ZrE I tanh(2 ,d)) I

Transformation of Eq. (2.5) back into (xz) coordinates results in two coupled equations, which

are

x(k J + 2d)=(N 2Ym + N2
2Y,)EI,,(k1 I + 2d) +N,,N (Ym. -Y,)iE(k, + 2d) (2.6a)

J2 (k, j1 + 2d) = N, Nz(Ym - Y,)E, (k, j 1 +2d) + (Nz2Y. + N.2Y.)E (k,I 1 + 2d). (2.6b)

Equation (2.6) is a spectral domain relationship between the fin currents and the slot fields. This

may be written in the form

................. .-. ........... ,..........,...................
-" -. ."--'- - - .- . " --....-..-. -, . 0 - . _ .' .".. - . -? - """-' ' h ;" . - "



Y" o" Y.

(27)

Y_:X Y: E

where the Y-matrix is a type of dyadic Green's function. Only minor alterations to the transmission

line equivalent circuits are required to analyze an arbitrary number of dielectric layers and metal-

lized surfaces.

The moment method may be used to obtain a satisfactory numerical solution to Eq. (2.6). A

matrix equation may be obtained by the application of Galerkin's method (testing functions being the

same as the basis functions) to Eq. (2.6). The slot fields are expanded in terms of a suitable set of basis

functions, which satisfy the edge condition, and are readily Fourier transformable. The representa-

tion with P basis functions is

PE Cx) = , ap wxz) (2.8a)

E,(x) = bq 74 (x . (2.8b)

A suitable set of functions is an orthogonal polynomial set, modified by the edge condition. The

functions used are

Cos (P-1)7 ( -s - )1

W ~ ~ 2 1,2,3-..j 2(x -s r

w w M X<+w (2.9)1 W~s --- <x <s+(29

sin S'Wx--w% (x = ,q = 3_2

, 2(x -s)W ,123,.

otherwise.
=0

. . .

.------ ..(.-.- . . . . . . . . . . . . . .
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Frequently, 4.(x) = P, (s ,w) is used. These functions are shown in Fig. 2.3 and Fig. 2.4.

For a centrally located slot, only even and odd -n terms (with respect to the center of the slot)

are required, i., p =0,2,4,- q =2,4,6....

The matrix equation is formed using the inner product.

- 0 Y(k 1 ) (2.10)

where k = 2n7r
2b

Of course, the summation must be truncated to a finite number of terms. The resulting homogeneous

equation is of the form

[A] x]I=o. (2.11)

For P E, basis functions and Q E. basis functions, A is a (P+Q, P+Q) matrix and x a (P+Q,1) vector

containing the unknown basis function coefficients. The eigenvalue solutions for k, are found by

solving det (A) - 0. The coefficient matrix x may then be found. P+Q-1 unknowns may be found in

terms of one unknown. Thus the approximate E, and E. eigenfunctions in the slot can be found.

The fields over the complete waveguide cross-section, and hence the mode functions, may be found by

returning to the equivalent transverse resonance circuits.

There is no unique definition for the characteristic impedance for non-TEM modes. A suitable

definition as discussed in [10] (13] is

Zo= I2 (2.12)2P

where V1 is the slot voltage and P the mode power. The slot voltage is given by

1 4-

2
V, f E,(xj + 2d)dx. (2.13)

The mode power is given by

'7.
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2a 2b

P Re If f E,,(x.y)H;(s,y) - E,(x,y)H;(xy) dxdy (2.14)
2 j 0

Using Parseval's theorem this may be expressed as

P 4~Re i~ f [i 2 (k, ,y),(k ,y) -E,(k2  .y)H'k, ,y)]dy. (2.15)
4b a=-M 0

E,,HyE, and H~, may be found in the (u,v) coordinate system as voltages and currents to the

equivalent transmission lines, giving

i. (A:,, ,); (kz k I kk y) 12+ i y)E:(k1  y) (2-16a)

E,(k. ,y)H(k 1  y) (H(k, ,y)N., + H(k 2 ,y)N,). (2.16b)

The y-integrals may be performed analytically. This approach simplifies the computation of the

mode power.

The fields for the nth mode may be expressed as

RX~yz) (Xy)eAiz +zi(Xy)ea (2.17b)

where , and h~are transverse vector mode functions, and 1m and hare longitudinal vector mode

functions. These mode functions, when normalized, satisfy the following orthogonality relation [14]

f f i,,, 1 z&ds = 8.

where 8,. is the Kronecker data which is defined by

8n~ 11 f n (21m

0 n ve
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23. Results and Discussion

For the purposes of this study, a centrally located slot will be considered. The techniques

presented can be used to analyze an arbitrary number of slots located anywhere in the shielded enclo-

sure.

Satisfactory approximate results for the propagation constant can be obtained by using

E,= P, (s ,w) and E, = 0. Upon investigation of the convergence of the propagation constant solu-

tions, two basis functions from Eq. (2.8) ( p-1,3, q-2,4) give sufficient accuracy. A "rule of thumb"

for the number of spectral terms required in the inner-product of Eq. (2.9) is

N X(k))Yj(k,,) N -16b (2.19)
-- N/12 W

This indicates that more spectral terms are required for a larger waveguide width to slot width ratio.

This number of basis functions gives good results without excessive computation time. Eigenvalue

solutions to Eq. (2.10) can be found by a course iteration to find approximate solutions, followed by

iterations using Newton's method.

The effective dielectric (ej = k, 21ko2) constant results agree with Schmidt et aL [101 A com-

parison of the computed normalized wavelength with Knorr and Shayda [8] is given in Fig. 2.5.

Knorr and Shayda use a pulse approximation for E, in the slot.

Experimental propagation constants at E-band (76-82 GHz) have been obtained (151 Figures 2.6

and 2.7 give comparisons between the theory presented here and this experimental data. The agree-

ment is quite good. Additional propagation data, for propagating and evanescent modes, which will

be used in submequent chapters, is presented in Figs. 2.8, 2.9 and 2.10.

The characteristic impedance, as defined by Eq. (212), is plotted for several cases in Figs. 2.11

and 2.12. A pulse representation of E, is used here. Note that the impedance increases with increas-

ing slot width. -" 'p

The nature of the Green's function matrix Y is of importance when computing infinite summa-

tions and integrals in the spectral domain. The asymptotic form of Y is particularly important. For

It .-.--. c,.-., -.-... ..-'..--
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1.3 This theory

Knorr S Shoydo

1.0

0.9

0.8
60 70 80 90

frequency (GHz)

Figure 2.5. Phase constant curves for unilateral fin-line with a WR-12 waveguide shield.
I IA422 MM 1, 2 1-549 mmf, 2d 0.254 mml, e,2.2, 2b 2.556 mmf,=4 GHz
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WR 12 Shield Er-2.2 "~
2b=0.06f"
11 = 0.061" -0 --Theory
12 = 0.056" Experiment
2d = 0.005 1-"4"I zi-

1.1- 2d

-W 0.020"
0"

W-- 005

0.5[ II I .r
76 78 80 82

Frequency (GHz)
HP- 239

Figure 2.6. Comparison of theoretical and experinental results for the effective dielgctric contant
of fin-line in a WR-12 shield.

% 0* , C



WR 28 Shield
W0.50 ~Er 2.2

2b 0. 140" -Theory
A-0.1450: 2b~j 03 Experiment

2d 0.005 2
1.2 W: 0.02"

1.1 W=0.051
1.0 Dominant

0.9 II .
76 78 80 82Frequency (GHz)

HP- 280

Figure 2.7. Comparison of theoretical and experimental results for the effective dielectric cntant
of fin-line in a WR-28 shield.
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C 30 &Hz.
0
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*Figure 2.11. Characteristic impedance for n-line with a WR-28 shield using a Pulae approxima-
tion for E.. 1~ 1 2 3A29 mm, 2d 0O.254 mm,, =2.22, 2b =2.556 mm.
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large k:

- cIk: I+c, c 3 gn(k.)

c 3sn (k, C4(2.20)

and for large k.

d1

I 1k, I + d d3sgn (k,) (2.21)
Y

d 3sgn (k. d 4 1 k I+d 5

where the c's and d's are constant coefficients.

The transverse vector mode functions are

i'(x,y) = xe (x,y) + ye,(x,y) (2.22a)

h (x,y) = xh (x,y) + yh, (xy) (2.22b)

These field components are plotted for a typical case in Figures 2.13 through 2.16. Notice that the

fields are confined to the region around the slot. The functions represent a single propagating mode.

The solutions for the propagation constant are very stable when a relatively small number of

basis functions and spectral terms are used. (iQ., a small number of spectral terms are required for

convergence in the propagation constant.) However, at least an order of magnitude more spectral

terms are required for convergence of the basis function coefficients. Also, an increase in the number

of basis functions necessitates an increase in the number of spectral terms.

It is therefore quite difficult to find a satisfactory representation for the propagating and evanes-

cent mode functions. The analysis of a number of fin-line problems requires the generation of a suit-

able set of orthogonal modes.

.... ... ... .~.-..* ....................................................... . . ...
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Figure 2.13. Fin-Line mode function I e2 (x~y).-

. . . . . . . . .. . . . . . . . . . . . . . . 7-
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Figu~e 2.15. Fin-line mode function I e, Cx y 1 .
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Figure 2.16. Fin-line mode function I h, (x y 1 . -
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CHAPTER 3: MOMENT METHOD ANALYSIS OF FIN-LINE DISCONTINUITIES

3.1. The Fin-Line Discontinuity Problem

Unilateral fin-line will be considered in the discontinuity analysis. The word *discontinuity"

will mean a perturbation in the slot width. A step discontinuity is shown in Fig. 3.1a. The solution

of such a problem is essential for design and analysis of many millimeter-wave components.

Mode matching has been used, with some success, to analyze fin-line discontinuities (41 [71 [16],

[17] An analysis of an infinite periodic array of stubs has been published recently [181 This

approach utilizes a moment method.

This chapter considers moment method solutions which are applicable to a variety of fin-line

*discontinuities, including the single discontinuity of Fig. 3.1a, and the periodic array of Fig. 3.1b.

The formulation employed in this chapter reduces a three-dimensional scattering problem to a

two-dimensional spectral relationship in the plane of the fin. This technique employs the known

spectral Green's function, Y. A spectral domain formulation, which is an extension of the two- --

dimensional analysis of Chapter 2, is employed. Section 3.2 deals with the single discontinuity prob-

lem and Section 3.3 considers the infinite periodic problem. Conclusions on these techniques are

drawn in Section 3.4.

3.2. Theoretca Analysis for the Single Discontmdty

The discontinuity of Fig. 3.2 will be considered for this analysis. The technique is quite general.

and may be applied to other geometries. A series of discntinuities, such as Fig. 3.2, is of interest in

filtering and matching applications.

A spectral relationship in the Ofln-planeo may be written as a general extension of Eq. (2.6)

' " . . . . . . ...- ,, 0 , ' , a-' m nnm nn-,.., mm n,,. . ,m.. ,,. n l . . .
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(a)

(b)

Figure 3.1. (a) Single dicontinuit in 6n-ii, ()araUfdcn 
m ji

(b ra fd s o tn ii s
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Figure 3.2. Geometry for single fin-line discontinuity.
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Y (k,2 ,k 2 )(k.k 2 )=J(k,k. (3.1)

where

Y (k, ,k) =

- 1 -

• " '

The spectral variable k, is again discrete; k, = 2n ir/2b, and k, is a continuous spectral variable for

the single discontinuity problem. Y is as for Eq. (2.7), with k, a spectral variable rather than an

eigenvalue.

A matrix equation can be obtained by applying the moment method to Eq. (3.1) with a two-

dimensional inner product defined by

= Ui( 1 1AYkk.d~ (3.2)

A single propagating mode will be considered in this analysis. The desired information is the

scattering parameters of the junction. Consider a three region problem, as shown in Fig. 3.2. The

fields in the A- and C- regions are assumed known, except for complex constants. In Fig. 3.2, a is

* •sufficiently large so that the evanescent modes are negligible in regions A and C The field distribu-

tions in regions A and C are found from a uniform slot analysis and are themselves a superposition of

. basis functions. The slot fields in the B-region can be expressed as a superposition of -suitable basis

functions. We can write

-. 7

Io

..................
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E=EA + EE X (3.3)

where EQE ~ Q=ABC

EQ =*Q~z

The W+ signifies forward traveling waves, and the ()signifies negative traveling waves. Expresing

the B-region fields in terms of a sum of basis functions,

Ej= i b 7) (x.z). (3.5)
Jul

The fin current, 7, and the slot field, F, are orthogonal, and by Parseval's Theorem, J and Eare

orthogonal. Therefore, the right-hand side of Eq. (3.1) will not contribute in the matrix equation. Of

course, the matrix equation will have a right-hand side which is due to the known incident field on

the junction (E+). Applying a moment method to Eq. (3.1),

< &,Y,,E, > + < =,,, ,> 0 (3.6)

< #,Y,,.E,,> + < #.Y,,E > 0.

This equation is of the form Ax - b, where x is the unknown containing the coefficients of the

basis functions, and b is due to the incident field which is known.

T"he reflection and transmission coefficients at z = ± can be related to the unknown basis

function coefficients in the B-region by integral relationships on these boundaries. Therefore, there are

I + J unknowns to be solved for.

The z-dependencies for the incident (fe, reflected (fr) and transmitted (f) fields are

f,.(z) = (I - (-1)]CJol (.7

fMz) = [1O- zJ (.7

!C-) -7



31

The Fourier Transforms of these, upon application of the Weiner-Hopf technique (where a finite loss

is introduced) [19], become

j (k1 -01)

f ,(kZ) = j(k - )(3.8)

- 1!j(k,-0 1)

f~k j = (k. 02 )

It should be noted that to reproduce the uniform solution from the formulation here, it is necessary to

consider the lossles case, where impulse functions are included in the transform of Eq. (3.7).

The efficient evaluation of the integral in Eq. (3.2) is quite difficult and of prime importance.

The inner product integral is of the form

_ yi F (k, )'"d

where 1, j E xz and F(k,) and Y4j have no real poles. The two integration contours used are

shown in Fig. 3.3. Figure 3.3a is for positive traveling waves and Fig. 3.3b for negative traveling

waveL The pole is located at the propagation constant for a given region. A good discussion of the

contour selection for many mode problems is given in Collin and Zucker [20 There are an infinite

number along the imaginary axis due to the evanescent modes. The location of these cannot be deter-

mined simply. Therefore, the integration contour cannot be closed. It is then necessary to evaluate

the principal value of the integral numerically. Davis and Rabinowitz (21] discuss methods of

approximate integration over infinite intervals. Unfortunately, the techniques generally used for

such integrals are not readily applied to this case. The kernel has a two-dimensional variation which

makes the application of asymptotic techniques very difficult. A satisfactory truncation point for the

integral must be selected to give an acceptable error. The method of foldover [22] may be applied.

This technique may be summarized by

r!
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Im (kz)

Re.(kz)

(8)

Im (kz)

w.

Re(kz)

C b)

Figure 3.3. Integration contours for inner product evaluation, (a) negative travelling wave,
(b) positive travelling wave.

. . ~.
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f Fi(k,)dkc f F,(kz)dkz + f F 1(kz )dkz + 7r Res( 1 )

0

=f F 1 (kdk. +f IF (-20 1kz) + FI(kz)jdkz

+ f F ,(k,)dk, + vw Res( 1) (3.10)
0

f F2 (kz)dk2 f F (k, )dkz k dk, i e

f L F2 k, )dk, + fk. V 2 k+ F 2 01-k.)dAz

L+ F (k,)k W. j irRes (- 1). (3.11)

The new kernel becomes bounded at the location of the singularities in the old kernel. This

allows a more accurate approximation near the singularity and an increase in the speed of the compu-

tation. The kernel is oscillatory in nature, which increases the difficulty of the numerical integration.

3.3. Numerical Results for the Single Dlscontinuity

E, is the dominant field component in the slot. It is, therefore, a satisfactory approximation to

* set E. =0. Equation (3.6) then becomes

<C YE> =0 (3.12)

* fore, orthogonal to J,.

Now consider a single pulse approximation for E,, U), so that E,, can be written as

- -----
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E= (ej OPI + a aejtZ) P (s,w 1) (1 -u-.(z))

+ a2e - j 24 P (s,w 2)U (z) (3.13) -'

where 01 and 02 are the propagation constants for the dominant mode for z < 0 and z > 0, respec-

tively. The testing functions used are

jj(x,z) = P1 (sw) PZ(-.,a) Je3.)£2

The integral in Eq. (3.2) has been evaluated numerically using both the IMSL routine DCADRE and

the trapezoidal scheme. A more efficient computer program can be written using the trapezoidal rule.

Integral limits of ± 15 01 with nineteen spectral terms in the k, summation prove to be adequate for

convergence. A trapewidal integration with 700 points is suitable. The foldover method is used in

the integral evaluation.

The scattering parameters of the junction computed by this procedure are not stable with respect

to variations in the pulse length a. While somewhat reasonable results can be achieved for certain

cases, the approach of testing a semi-infinite unknown with a finite pulse does not give reliable

results.

If low is introduced into the basis functions of Eq. (3.13) and Galerkin's method is used in Eq.

(3.12), the poles move off the real k, axis The unknowns are tested over the entire semi-infinite

region. The scattering parameters vary significantly as a function of the los coefficient.

3.4. Theoretical Analysis for an Infinite Periodic Array of Dlscoranuites

A unit cell in an infinite array is shown in Fig. 3.4. The spectral relationship of Eq. (3.1) can be

applied to this geometry. However, now k, takes on discrete values.
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--o

Wf W

Figure 3.4. Unit coil /n an infinite periodic array of discontinuities; -
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A discussion of periodic structures is given in Collin and Zucker [201 Floquet's Theorem may

be used to relate the field quantities at z -a and z -- . The fields may be expanded in a Fourier

series in the z-direction. For the E-field,

E9(x,y,z) - 2 E9n(x,y)e - s "

[ a 2-Eq (~z f E,(x,y )e~ 'd

.12

where q E Ix6 z

= + 2nv

In the application of Eq. (3.1) to this geometry, field quantities in the plane of the fin

(y = 11 + 2d ) are considered. E. and Ez in this plane can be expanded in terms of appropriate func-

tions, and a homogeneous equation of the form Ax - 0 can then be obtained by using Galerkin's

method. -

Consider a representation for E, and Ez given by

Io

I

E2(xz) = b, 71j(x,z). (3.16)

The weighting for the discrete spectral terms is given by

*12 2b

4(1~) . f f Cj (Xz e j +k xOxz) dx dz

2h a /2 0 "

a/-.2 0

The homogeneous equation becomes

-.-- :. .-. - • .- -. -- - - . . - . .-:--.. -. •.... .. ..... . . . . . ....-.-. ...-i-: i-i-:.--- -"-- ---. "--- ... ,-
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-P, Y.E< ,r. Eai, > + E <j ,r. bj j, > =o. P 1,.I
n i== n-

-9 <fqYZX > +~<1 z Eb 71> =0. q =1,4J (3.18)
n i=1 n j 1-

14 . "

4 The solution of det(A) - 0, where A is the operator matrix in Eq. (3.18), gives the solution for ,

. IL
Consider the (ko0 a, Oa) diagram shown in Fig. 3.5. Several coupled modes are shown in this

diagram. Stopbands occur when Oa equals an integral multiple of ir. When Oa = r, coupling occurs

between the n - 0 Floquet mode and the n - -1 mode. That is, there is coupling between a forward

traveling wave and a negative traveling wave. Note that the example in Fig. 3.5 is for a TEM wave

in a periodically loaded media which has no low-frequency cutoff.

The analysis outlined here is implemented numerically in the next section. This gives an

approximation to the (k. a, Oa) curve over a particular range. The range of interest here is

3.5. Numerical Results for an Infinite Periodic Array of Dlscontnuities

The (k. a,8a) diagram for an infinite periodic array of discontinuities, as shown in Fig. 3.1(b), is

r determined in this section. The basis functions used to approximate the fields in Eq. (3.16) are

-1(X,z) = P (s,w ) P. (0,a)

£ ix~z =, P(s,w 1) (zOa) - P, (0,4, sgn (z)

,-P

i7h(,z) 2( -  1- 12 (3.19)
W \/ WI

The computed results for a portion of the (koct, Oct) diagram are shown in Fig. 3.6 together with the

r fin-line dimensions for this example. The approximation used for the slot fields results in some spuri-

-. r-
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Figure 3.5. (ko Oa go) diagram for a TEM wave in a periodically loaded media.

.,
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3.0-

2.0-

f.5_

9 .8 8.6 1.8 1.5 2.6 2.5 3.6 3.5
beta x alpha

*Figure 3.6. Computed (k oa Pa) diagram for fin-line in a WR-28 shield. 11 12~ 3.429 mm, 2d
-0.254 mm,E e,.2.222b- 2.556 mm4w 1 -2 MmNW 2 2.0mm,l 1.O.2MM, a
4.4 mm.
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ous solutions near d w and poor sensitivity to discontinuity variations. " "

3.6. Concluding Remarks

This chapter used a two-dimensional spectral relationship in the fin plane, between the slot

fields and the fin currents. The moment method was then used to solve for the slot fields. Both the 7

problem of a single step discontinuity and an infinite periodic array of discontinuities were studied.

In the case of the single discontinuity, efficient evaluation of the inner product integrals is important

to minimize computation time.

.6-
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- CHAPTER 4: ITERATIVE AND VARIATIONAL SOLUTIONS FOR FIN-LINE

g DISCONTINUITIS

': 4.1. Introduction

This chapter considers various iterative solutions for the fin-line discontinuity problem. The

discontinuity considered in this chapter is that of Section 3.2 which is shown again in Fig. 4.1. The

emphasis of this chapter will be on two iterative procedures which are applied to a suitable formula-

tion. -

Solution of electromagnetic problems using iterative techniques is advantageous when there are

a large number of unknowns. In fact, when there are a very large number of unknowns, it is the

V only way to find a solution. If the number of unknowns is such that the matrix can be inverted on

- the computer being used, the moment method may be preferable.

The discontinuity problem is formulated using unknowns in the junction plane, in Section 4.2.

The solution procedure using a conjugate gradient iterative scheme is outlined in Section 4.3. Numeri-

.. cal results for the conjugate gradient method are given in Section 4A. Solution for the junction plane

unknowns using the generalized variational procedure is outlined in Section 4.5, and numerical

* results are given in Section 4.6. Conclusions are drawn in Section 4.7.

4.2. Formulation using Unknowns in the Junction Plane

A waveguide junction problem can be formulated using the mode functions either side of the

discontinuity [231 Consider the general junction of Fig. 4.2. The transverse field can be expressed in

terms of the mode functions in guides A and B. Consider I modes

I',

, , "=.".. L....."--'. ..... .. ...... :ka'lhh+t:. - "' . .
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Figure 4.1. Single step dibcontinu~ity in unilateral fin-Iine.

.
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Guide A S Guide B

L

-. 
P .

Figure 4.2. General junction between two waveguides. -
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e + a,4.et .<0
'Er (4.1a)

b, z >0

I I _--

ie e Z ahmef" z <0

H ju(4.1b)

b, e-'b z >0
ill

Rather than pursuing the regular mode-matching formulation, consider an alternate approach as

follows. Figure 4.3 shows an equivalent representation for the junction, employing equivalent mag-

netic currents over the apertures. The total transverse field for the equivalent problem is

F. e"i" -d. i e z <0

= I i-I(4.2a)IE U-
Ebji,,e z >0

C -"a + K " - di K. e z <0

iHI (4.2b)

The fields produced in guide A by K are a(k),ffa(i), and in guide B by -K are

it (-k ,b (-k). For continuity of ,

k - -)i Z I zo d -i

k 2XlBb(K)z,-O E Ebi zxil. (4.3)

Continuity of , requires

. - . - . . . . .. . . . . . . . .. ..... . . . .
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____ ___ ____ ___ ____ ___pec

Guide A $s

L + b

pec

S Guide B

Figure 4.3. Equivalent waveguide junction problem.
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2h d, h. + E , e (4.4)
1=1 1=1

The solution for the unknown quantity, Kcould be obtained via several numerical approaches.

The solution for k via certain iterative techniques is of interest in this chapter.

Taking inner products of Eq. (4.3), and using the orthogonality of Eq. (2.18) with normalized

mode functions,

ff ~Kj ds = di ff K., ;xi s

ff bk -k ds jbi ff K. ;X~ds

-bt. (4.5)

Substitution for the d's and b's in Eq. (4.4) results in an integral equation which may be used to

solve for the unknown operative magnetic current K.-

2 hd(x,y) = , hj(xy)ff (y) -k(z',y)dx'dy

+ h(x -Y) ff &j (x'y). -k(x'y)dz'dy. (4.6)
jut

This equation may be interpreted in terms of the Green's function for each guide as follows.

The dyadic Green's function can be found simply from the mode functions using a procedure outlined

in Coln and Zucker [24 Equation (4.6) can be written as
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2h,=ff tG. +G~bIIXjds

* where

1K(X,Y)j
AT I

q E la~bi.

For the fin-line discontinuity of Fig. 4.1, the aperture is the crass-section of the shielding enclo-

sure. The number of modes, Lineach guide will be smalldue to the difficulty of finding ahlrge

number of orthogonal modes.

Following the solution for k, the mode coefficients can be found using Eq. (4.5). The scattering

parameters can then be determined from these mode coefficients following a re-normalization for unit

power. Assuming that the modes have been normalized for f f 1, X&~ ds =1, the scattering param-

eters for the single propagating mode are given by

.f f jig, k ds ~ .Xd~(4.8)

hi txhq Ids
q E Jab)

n E 1,2I



48

43. Conjugate Gradient Solution for Unknowns in the Junction Plane

The conjugate gradient method (25-1281 has been in existence for some time. However, it is only

recently that it has been applied to the solution of electromagnetic problems [271 The method was

developed by Hestenes and Stiefel [251.

For n unknowns, the method will converge in n steps, if no rounding-off errors occur. The

method is quite simple. At each step, the estimate is an improvement over the previous step, and the

process can be restarted at any step using the last value as the new initial estmate.

Consider the linear equation L f = g, where L is a general non-singular matrix. L I L is a

positive definite operator, but is in general non-symmetric. The system L f = g is equivalent to

LALf =LAg. (4.9)

Another equivalent equation, which results in a symmetric, but not a positive definite operator, is

LrLf = Lrg. The conjugate gradient technique may be applied to Eq. (4.9). The iterative scheme

is

r0  g -Lf.

p. =LAr.

IILAri 112
a, IILpi 112

f = fi + aAp,

r, +1 r, -a, aLpi

bi = IILiri+112

IILAr, 112

pi=l LAr+4  + bip. (4.10)

The inner products in this scheme are defined such that Ilf 112 = <f,f > and

< fL f > - <LAI ,f >.
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An estimate f of the unknown f is used to generate the residual r. and the direction po. In

each cycle, following the determination of the estimate f,, the residual r, and the direction p,, the

next estimates for f, + 1 r, + ppp+I are computed. The residuals r.,r r are mutually orthogonal, and

the direction vectors p,p 1, are mutually conjugate, therefore

<rirj > 0 1 (4.11)

<pLpj > 0.

Each estimate fi+I will be closer to the solution than f,. The norm-squared of the residual can be - -

used as a measure of the error

err = 11r, 112. (4.12)

However, this is not alway reliable, as 11ri 112 may not decrease at each step.

Consider now the fin-line discontinuity problem of interest, which is shown in Fig. 4.1. This

problem was formulated in Section 4.2. The conjugate gradient method can be applied to Eq. (4.6) to

solve for k(x ,y). The unknowvns are K. and K, over a grid of points in the (xy) plane at z -0.

An (m ,n) set of grid points represents 2ran unknowns. A reasonable approximation for the unk-

nown requires a large number of unknowns.

The inner product for this problem is given by

<x > = ff x'y dxdy. (4.13)
S

4.4. Numerical Results for the Conjugate Gradlem Solution in the Junction Plane

The mode functions are found using the procedure outlined in Chapter 2, resulting in

F. (k1 ,y), k, (k.,y). For convenience, many of the processes in the iterative routine of-Eq. (4.10) are

carried out in the spectral domain. The Fast Fourier Transform is utilized throughout for transfor-

mations in the x-direction. Although there are 2mn total unknowns (for an (m ,n) array of points),
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(m A) arrays may be used throughout the computer program.

As indicated in Chapter 2, it is difficult to obtain a large set of orthogonal mode functions for

use in the Green's function. This necessitates computation with as few as three modes.

The limiting case of a uniform slot is a good example to consider first. A relative error will be

used as a figure of merit, where the residual is normalized to the incident field.

reL. erri = - (4.14)
Ile. 1112

Figure 4.4 shows the results at each iteration using a poor initial estimate of k = ky= 0 + j O.

Notice the rapid convergence to the solution. This data is for m=17, nf=33w = w2  1mm and

three modes. There are therefore 1122 unknowns. Using a DEC VAX 11/780 computer, ten itera-

tions using this array size require approximately sixteen seconds cpu time. This time can be reduced

somewhat by using a radix-two FFT and zero padding.

Applying the same procedure to the case of differing slot widths on either side of the junction

does not yield such satisfactory results. Figure 4.5 shows the results for m=17, n=33,

W I = 1mm, w 2 = 2mm and three modes. s goes to one because the iterative scheme finds a solution

which corresponds to a higher-order mode, and is orthogonal to the Green's function modes in one -

region. The conclusion is that with the small number of modes which can realistically be found and

the large number of degrees of freedom in the unknown, this approach wifl not yield satisfactory

results. It is necessary to have the number of unknowns similar to the number of modes in the

Green's function. Similar results are obtained when the number of grid points is quadrupled.

4.5. Solution in the Junction Plane Using the Generalized Variational Technique

The approach presented here also considers unknowns in the (xy) plane of the junction. Again

consider Eq. (4.6), which is of the form Lf f g, where L is an integral operator, f is the unknown,

and g is the known incident field.

k :"

," ."."." -'-. -'i," - .-'. '. '--.' "'...-.,'...''...-.,'- '-'-'', . -'-'-" --" . ,'."-""'" , -" " '- .'-. .,' .. ..''.,.
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Figure 4.4. Relative error for the conjugate gradient solution of a uniform fin-line with a WR-28
shield. 1=-2 - 3.429 mm, 2d - 0.254 mm, e, - 2.22, 2b - 2.556 mm, w I W 2 -1
mm, f - 30 GHz, m -17, n -33. The resultant scattering parameters are: S 1 - 1.192
X 10' J 1.0486 X10' S 2 1 1.000 +j 1.049 x10't
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I erat Ion numbr"
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Figure 4.5. Relative error for the conjugate gradient solution of a discontinuity in fin-line with a
WR-28 shield. - 12 - 3.429 mm, 2d - 0.254 mm, E, - 2.22, 2b - 2.556 mrm,
W I 1 mM, W 2 - 2 MM, f - 30 GHz, m - 17, n - 33. The resultant scattering param-
eters are:  - 1.000 + j 6.487 x 10-3 S - -1.904-x 1 3 + j 1.636x 10-2.

S 21 - -1.4 x 1

S- ... . . . . . . . . . . . .. . . . . . . . . . . . . .

".."A'' . "A .;"."..V '" 't. .. -. "'.'- "" . . .'.-.. . .. ".•.. . . .-. ".. . . . ."".-. .". .-.. " ..-''-," " " ",..."o". .- ", "" ".
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The unknown quantity x may be expressed as a superposition of characteristic functions which

are to be determined. fcan be expressed as

N
f Cm f. (4.15)

The f . are L-orthogonal, and satisfy

<fn OLf m =T~n8nm (4.16)

where 8,, is the Kronecker delta function. A suitable set of characteristic functions can be generated

* by

= Un (4.17)

where &6, is an auxiliary function which satisfies the orthogonality property

< U. 'U.> ~ p.(4.18)

The auxiliary function can be found by

where1

From Eqs. (4.15) and (4.16),

*c,. .f ,k> (4.20)

The generation routine can be summarized as
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uo= " fo --

I1u. 112

• . 7.rl ff >

71,

1
u.+,=u -- Lf.

MUn + I  "

f 1u= +I2I2 +f. (4.21)

The generalized variational technique way also be applied to the equation LALf inLAg,

where now the generation routine becomes

o.

fo -IIU 1

k: 11n7
'h = <1f JALfn> "
76: <.f .,nA Lf > .

¢"N

C" 1 

u,+i = un LALf.

'-"f M + I  
,. +

! fZ -'+ " n.(4.22)II u, +i II112';-

These routines can be used to solve for the unknown magnetic current in the junction plane of

the fin-line discontinuity. A good choice for f . is z xi. 1. where i. is the incident transverse E-field

mode function, with a possible alternative being ; x ( i. I +,6 I)- The coefficients c., and successive

characteristic functions f. are generated by Eq. (4.21) or Eq. (4.22).

4.6. Numerical Results for the Generalized Variational Solution of the Fin-Line Discontnuity

Problem

The results in this section are generated using three modes in the Green's function. Two basis

functions for E, and E, are used to generate the modes. Referring to Eqs. (2.8) and (2.9), these func-

tions are for p 0, 1 and q 2, 4. It is important to verify that the numerical results satisfy the

IL
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following relationship for the single propagating mode.

'S 11 "
2 + 1S 2 1 12 = 1. 4.23

Referring to Eq. (4.21) and Eq. (4.22), uo is chosen as zxia . Two different unilateral fin-line

geometries are considered. There is a shortage of data from other authors for comparative purposes.

Figures 4.6-4.9 show the computed scattering parameters for a step discontinuity in fin-line

with a WR-28 shield. The equation Lf = g is used with one and two characteristic functions. A

monotomcally convergent solution as a function of the number of characteristic functions is not

guaranteed. A comparison with the mode-matching data in [17] is given. However, it appears that

Eq. (4.23) is not satisfied well in [17] so definite conclusions cannot be drawn regarding the accuracy.

A comparison between the equations Lf =g with one and two characteristic functions and the

equation L Lf = L g with two characteristic functions is given in Figs. 4.10-4.13.

The scattering parameters for a step discontinuity in fin-line with a WR-62 shield are shown in

Figs. 4.14-4.17. The equation Lf = g is used here. Equivalent circuits for this problem using S 1

have been generated by ElHennawy and Schunemann [16] using a mode matching technique. A coin-

parison with these results is given. An indication of the modal solution accuracy and the satisfaction

of Eq. (4.23) cannot be determined from the work of ElHennawy and Schunemann [41. [16]. An

approximate convergence criterion for the maximum number of characteristic functions p with q

modes in the Green's function q is p <q-1.

4.7. Concluding Remarks

This chapter considered two procedures for evaluating unknowns in the cros-sectional plane of

the fin-line discontinuity. The scattering parameters, or equivalent circuit for the discontinuity, may

"* be found from these unknowns.

The conjugate gradient method was considered first. It did not give satisfactory results for the

discontinuity problem. This was because the number of degrees of freedom in the unknown was

"° °A

. o . ., . . . . . . . . . . . . • • -
-,- -, ,,,, ,- ,, ,, ,.-,- , ,,.-. -, ,.-.. ,'. - -,,,.,,, ,. ., ', , - :,.:,, > ,, ,. ," ,',, ,/ ,, , ." ,. V, ,. -
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Figure 44 IS I I for a discontinuity in fin-line with a WR-28 shield. I I -1 2 - 3.429 mm, 2d-
0.2U4mm, Er-2.22, 2b -2.5:56 mm, w I MM Wm 2 -2 mm, m - 17, n - 33.
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Figure 4.7. Phase (S 1 1 ) for a discontinuity in fin-line with a WR-28 shield. 11 - 12 3A29 mm,

2d 0.254 mmS 2.22, 2bi2.556 m,W -1 pun, Wz22mm m - f, n" 33.
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Figure 4.9. Phaus(S21) for I diacontinUitY in fin-line with a WR-28 shield. 11 1- ".3.429 mm. 2d
-0.25 mm s, - 2.22, 2b - 2.556 mm, w I-IMMW 2i 2 mm m -17, n - 33.
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Figure 4.10. IS JI for a dismotinuity in fin-line with aWRM-28 shield. 11 - 12 - 3.429 m,2d-

0.254 mm, - 2.22, 2b - 2.556 mm w I-1 IMMW 2 - 2 mm m -17, n -33.
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much greater than terms, or modes, in the Green's function. It is not realistic to find a large number

of modes for the Green's function. The uniform guide solution was reconstructed very efficiently.

The other approach outlined was the generalized variational technique, which involved

representing the junction plane magnetic current in terms of characteristic functions. The routine for

generating these functions and determining their coefficients was outlined. The results using this

approach were satisfactory.

The difficulty of finding an accurate large set of mode functions is a limitation of the approaches

covered in this chapter. For this reason, it is advantageous to look at alternate formulations which do

not require the generation of these mode functions.

* i Formulating the problem in the fin-plane avoids the need for computing the mode functions. -

The Green's function determined in Chapter 2 can be used, as it was in Chapter 3 for the moment

method analysis. The author has investigated several iteration procedures which may be used in con-

junction with such a formulation. This work involved a variant of the Spectral Iterative Technique

(SIT) [291 For guaranteed convergence, it would be advantageous to apply the conjugate gradient

technique to this problem. These approaches are worthy of further consideration.

.' . . . . . .
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CHAPTER 5: DIELECTRIC WAVEGUIDE FILTERS

5.1. Introduction

Dielectric waveguide (DWG) filters are of particular interest for millimeter-wave end optical

applications. A number of applications have been reported recently in the millimeter-wave and quasi-

optical areas [30H321 and optical grating filters have been reported in [33] Grating-type dielectric

waveguide filters have several advantages over alternative configurations such as the ring-resonator

filter [34] [351 In particular, the ring resonator should be a number of wavelengths in circumference

for satisfactory performance, which implies closely spaced spurious pass- or stop-bands. The filter can

easily be incorporated into an integrated system and may be realized by a series of discontinuities such

as surface or dielectric variations.

There has been some work done on mode-matching methods [36] in an effort to analyze discon-

tinuities in a two-dimensional dielectric waveguide. It is difficult to apply these techniques to the

analysis of grating filters considered in this chapter. It is proposed that a simple transmission line may

be used to analyze such a grating structure. Experimentation has verified this approach. The theory

*- developed is valid for a number of dielectric waveguide structures.

Section 5.2 gives details of the theoretical analysis of the dielectric waveguide grating filter.

* Experimental results are given in Section 5.3. Conclusions are outlined in Section 5.4.

5.2. AnaLysis of Dielectric Wavegudde Grating Structure

A stepped dielectric grating structure and transmission line model are shown in Fig. 5.1. The W7

waveguide known as image guide (rectangular dielectric guide on a ground plane) will be considered

* specifically, although the approach may be generalized to other dielectric waveguides. It is proposed

that this model may be used for an apnroximate analysis of the grating filter.

The dielectric waveguide supports hybrid modes which may be expressed as a sum of longitudinal

section electric (LSE) and longitudinal section magnetic (LSM) modes. The LSE fields may be expressed

as [14.
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Figure 5.1. Image guide grating filter and transmiiNion line model.
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E= -j AtV xflAj (5.1a)

HEkOH + V Vf (5.1b)

* and the LSM fields as

£ kdfL + V(er-' V fL) (5.2a)

H =j w eoVX L (5.2b)

* where [hA and Jrj are the magnetic and electric Hertzian potentials, respectively.

with H y Oh (xy)ejO JZ=y~jA and ].L =yoi, the dielectric waveguide fields may be

* expressed in terms of electric and magnetic scalar potential functions:

06,(y jax j

Ox 6,(y) 8X 2

Ox , ( a

Ox2h

OY +X 2~~

Thie effective dielectric constant method [37]1 [38] is a very suitable approach for finding the propagation

constant in planar dielectric waveguides. Various forms of dielectric waveguides may be analyzed in

this manner. Consider the image guide structure of Fig. 5a2 Using the effective dielectric constant

method and matching the fields in each region, the following eigenvalue equations may be found. The

* equation for kis

e, 1 k j(e, -I) - k can ky I- k, sin ky 1 0 (5.4)

where e, is the relative permittivity of the guide. After solving for k., the effective dielectric con-

................................................
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stant (e,2) for region 2 may be found:

2 = E, - . (5 5)
kOo20

The equation for k, is

[k(E,2- )-2ksin k,(x 2 - x 1 ) + (5.6)

+ 2k %k (E, 2 -- 1) - k. (x 2 -- x,= 0.

* Thus the guide propagation constant becomes

A e€, - k. (5.7)

The dominant mode will be considered in the following analysis. The waveguide characteristic

impedance may be defined as

k 0 (5.8)

where 71 k 0 are the free-space wave impedance and propagation constant, respectively.

In order to find the filter transfer function, consider the unit cell shown in Fig. 5.3 The ABCD '-

*'. matrix for the unit cell may be obtained by multiplying the matrices for two line sections [391 The

unit cell matrix is C I D
ONGA =co(AG )G cKN( ING 4 ). I )si n( NG)

B n -L ~ CO@(PGI)uin(OL 0 ) ZO Lhin(AoG Gcos (Pjvr ING ~'- . 1

CW Gsin(ArIGcooas(OG 1No+ -co (G). n~L GI (5.9)~
710 ko ko (5-9)

D - cooG oo (NG ING ) sin( +G- sin( (NG NG).
a - * ) - . ' . . 9 .
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The ABCD matrix for a grating structure of n unit cells is obtained by raising the matrix for a single

cell to the nth power.

The transducer loss ratio is given by [391j

AR, + D&)2 + B+ CRL~ 121 510
FL 4&G RL AR & jB(.)

where PL is the power delivered to RL and P,,., I V9 12/4& is the available power from the genera-

tor. This results in a method for computing the filter insertion low (PL IP.,.u) as a function of fre-]

quency. Although this technique is approximate, the response predicted from such an analysis agrees

well with measurements.

Fields in a periodic structure can be expressed in terms of spatial harmonics, according to Floquet's

Theorem [191 The propagation constants are

0., =0 + w, n =0,±l,±2, (5.11)d

where d is the grating period. It is useful to look at the dispersion curves on a kod d-diagram.,such

as Fig. 3.6. Coupled mode theory may be used to explain the filter characteristics. There is a stop band

when

~d =w(5.12)

where is the propagation constant in the grating. At this frequency there is coupling between the

spatial harmonics (00)+ and (001)-. which propgate in opposite directions. The waves are guided by

the stuture (slow-wave region). The grating exhibits a reflection coefficient close to one in the stop-

band, and close to zero on either side.

Consider ports nand n+I in the unit cell of Fig. 5.3, when the cellis part ofan ininite periodic

structure,

=1 C I Ii.~ e +11 (5.13)IC D~ta..i I"Yd

D. +1 +
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For a lossless reciprocal network [40],

cos A d = - (5.14)

The following relationship may thus be derived

cos d =cos Or G cos ACS (d -La)- (5.15)

-1_- C + G sin Or, G s OING( - 1r).
2 Aim or,

For a particular d//%, the required d may be found from eq. (5.15) once the propagation constants p

and AN, for a uniform guide have been found from Eqs. (5.4)-(5.7).

53. Results and Discussion

Filter designs and response predictions were achieved using the procedures outlined in Section 5.2

with the aid of computer programs.

A scaled image-guide filter was built and tested in the X-band frequency range. The predicted

and measured insertion low responses and the dimensions are shown in Fig. 5A. Rexolite 1422 was used

as the dielectric, due to its favorable electrical and mechanical qualities. To enable testing with a net-

work analyzer system, a suitable transition between metal waveguide and DWG is necessary. The

transition used consists of a horn and an H-plane tapered section of DWG. This has been shown to act

as a low-los transition.

The predicted response is for matched loads at midband. (Maximum ripple across the band due to

mismatch is less than 1 dB). Equation (5.14) predicts the lower edge of the stop-band, so a slight

adjustment is necessary to obtain a required center frequency. The measurements agree quite well

with predictions. Measured data in the 11 - 12 GHz range deviated from the predicted response. This

deviation was due to radiation in this frequency range. It is generally accepted that grating-type

slow-wave DWG structures have some inherent radiation problems. However, the radiation region

may not cause a problem and could possibly be eliminated by tapering the steps at the ends of the

structure [40. Increasing the number of sections or the step size increases the stop-band insertion los.

.............."......._ i o . .. _ ? . . .-. .. : -. ..... .... ." ., , , -..... -. . .. . ':';-,- - - , -, ........ -.. ''-,.-.'... -' .,*.- . . , .'--.. .-.. ''- . . . ,-. .- .. .
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There are a number of interesting filter structures which employ gratings. These include:

(i) stagger-tuned grating sections in series to realize a low-pass or large stop-band band-reject filter

(Fig. 5.5(a))

(ii) grating with coupler (Fig. 5.5(b)). The forward coupler action couples the reflected power from

the grating to achieve a band-pass response between parts 1 and 2

(iii) tapering in the grating to obtain an equal-ripple response. The realizable G /N limits this.

A simple yet effective means of analyzing dielectric waveguide grating filters has been presented.

Experimentation has verified the theoretical analysis. This technique thus becomes a useful design tool

which is applicable to many forms of periodic and non-periodic guided wave structures.

....................-.
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Chapter 6: CONCLUSION

Several millimeter-wave waveguide problems have been investigated. These problems involved a

single or a series of discontinuities in fin-line and dielectric waveguide.

The uniform fin-line was analyzed in chapter 2. The problem was formulated in the spectral

domain, and a numerical solution was obtained using the moment method. Results for the propagation

constant, characteristic impedance and mode functions were given.

A two-dimensional spectral relationship in the plane of the metal fin was used to formulate the

discontinuity problem in chapter 3. A single and an infinite periodic array of discontinuities were stu-

diedL The numerical solution was obtained by using a moment method. Results for the single discon-

tinuity analysis and the dispersion curve for an infinite periodic array of discontinuities were given. In

the case of the single discontinuity, efficient numerical evaluation of a number of integrals was impor-

tant. Stability of the solution with respect to variations in the approximating functions was a prob-

lem.

In chapter 3 the fin-line discontinuity problem was formulated with unknowns in the transverse

plane of the junction. Two numerical procedures were used to solve for these unknowns. The first, the

conjugate gradient method, could solve the uniform problem well, but would not converge to the

correct solution in the case of the discontinuity. The correct solution was not obtained because the

number of degrees of freedom in the unknown was greater than the number of terms possible in the

Green's function. The second approach involved a use of the generalized variational procedure, which

represented the unknown in terms of characteristic functions Satisfactory results were obtained with

this approach.

A rectangular dielectric image guide grating ilter was analyzed in chapter 5. The effective dielec-

tric constant method in conjunction with a transmission line model was used. Satisfactory agreement

between theory and experiment, for the insertion look was obtained.

!-
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